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ABSTRACT management (Lemunyon and Gilbert, 1993). The P in-
dex accounts for source (soil P and rate, method, andThe mapping of soil P concentration is necessary to assess the
timing of applied P) and transport (surface runoff, ero-risk of P loss in runoff. We modeled the distribution of Mehlich-3
sion, leaching, and landscape position) factors control-extractable soil P (M3P) in an east-central Pennsylvania 39.5-ha water-

shed (FD-36) with an average field size of 1.0 ha. Three interpolation ling P loss in surface runoff and ranks sites for their
models were used: (i) the field classification model—simple field potential risk of P loss.
means, (ii) the global model—ordinary kriging across the watershed, In areas with large fields, the mean or median soil
and (iii) the within-field model—ordinary kriging within fields with test value is generally used as the best estimate of P
a pooled within-stratum variogram. Soils were sampled on a 30-m concentration in a field, except in cases where precision
grid, resulting in an average of 14 samples per field. Multiple validation sampling and fertilizer application are used. In areas
runs were used to compare the models. Overall, the mean absolute

with small fields, such as Pennsylvania, a single bulkerrors (MAEs) of the models were 76, 71, and 66 mg kg�1 M3P for
composite or the mean or median soil test value is tradi-the field classification, global, and within-field models, respectively.
tionally used as the best estimate of P concentration.The field classification model performed substantially worse than did
Under these models, information on farm- and field-the kriging models in five fields; these fields exhibited strong spatial
scale variability is not used for the estimation of P distri-autocorrelation. The within-field model performed substantially bet-

ter than did the global model in three fields where autocorrelation bution. More complex interpolation methods, such as
was confined by the field boundary. However, no differences in P those from the disciplines of geostatistics and precision
index classification were observed between the three prediction sur- agriculture, incorporate spatial variability into estimates
faces. The field classification model is simpler and less expensive of P distribution. Field-scale variability, which is con-
to implement than the kriging models and should be adequate for fined to field boundaries, may be caused by uneven
applications that are not sensitive to small errors in soil P concentra- fertilizer distribution or movement within fields. Farm-
tion estimates. scale variability, which is not confined to field bound-

aries, is likely caused by larger scale management factors
such as distances to roads or manure storage facilities.Phosphorus is an essential element for plant and
Natural factors, such as variations in weathering, soilanimal growth and its input has long been recognized
parent material, erosion, and water movement patterns,as necessary to eliminate plant nutrient deficiencies and
may also influence soil P distribution (Larson et al.,to maintain profitable crop and livestock production.
1997). The influence of management is probablyExcess P inputs, however, can increase the biological
stronger than natural factors in fields with very high soilproductivity of fresh waters by accelerating eutrophi-
P and a history of large P applications. The choice ofcation (USEPA, 1996). Eutrophication is the natural
an interpolation method should be based on an assess-process of lake and stream aging through nutrient en-
ment of the scale and strength of autocorrelation presentrichment, but may be unnaturally accelerated by human-
and the costs associated with the sampling design.induced nutrient loadings. State and Federal authorities

The variogram is an important tool to detect the pres-are moving towards stricter P management and in-
ence of spatial autocorrelation and to estimate the vari-creased pollution prevention support. Agriculture ac-
ability structure of soil properties (McBratney and Web-counts for the major proportion of total inputs of P to
ster, 1986). A global variogram can be used to assessmajor freshwater systems in the USA (USEPA, 1996).
the variability structure of a soil property across a water-There is evidence that the great majority of agricul-
shed, but it does not account for smaller-scale factorstural P export originates from a small portion of the
such as field boundaries. Variograms can also be devel-landscape in humid, upland agricultural watersheds
oped for each field individually (Goovaerts, 1997). Sev-(Gburek and Sharpley, 1998). These areas have been
eral researchers have used within-field, more generallytermed critical source areas and are characterized by
termed within-stratum, variography to estimate the spa-having high potential to release P into surface or subsur-
tial variability structure of soil properties (Stein et al.,face runoff in conjunction with hydrologic connectivity
1988; Boucneau et al., 1998). However, data sparsitywith streams or ditches. Targeting critical source areas
may prevent the reliable estimation of spatial semivari-would increase the efficiency and reduce the economic
ance functions within each stratum (Webster and Oliver,costs of control. In response, a site vulnerability assess-
1992). At least 50 to 100 data points may be necessaryment tool, the P index, has been developed to target P
to achieve a stable variogram, depending on lag spacing
and the smoothness of the spatial variation (Voltz andB.A. Needelman and G.W. Petersen, Dep. of Agronomy, The Pennsyl-
Webster, 1990; Burrough and McDonnell, 1998).vania State Univ., 116 A.S.I. Bldg., Univ. Park, PA 16802; W.J. Gburek
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grass). The watershed has 22 cropped fields with an averagehas focused on individual fields (Pierce et al., 1995;
field size of 1.0 ha. In many cases, these fields are laid out inGupta et al., 1997). For a 16-ha field, a common field
strips. However, we decided to analyze each of these stripssize in the Midwest, about three samples per hectare
as individual fields because they are not managed in a coherentare needed for 50 data points per field (�50-m grid).
rotation. Rather, each field (or strip) is essentially managedFor a 2-ha field, a field size common in the northeastern as a separate unit. In the 5 yr prior to sampling, selected fields

USA and other parts of the country, a sampling intensity north of the stream received about 60 m3 ha�1 yr�1 swine (Sus
of about 25 samples per hectare is required to produce scrofa) slurry in spring and no fertilizer P. This amounts to
the 50 data point minimum (�18-m grid). This sampling about 100 kg P ha�1 yr�1 assuming a slurry P concentration
intensity is not economically feasible for many agro- of 1.6 g L�1 (Eck and Stewart, 1995; Sharpley et al., 1998).

South of the stream, �5 Mg ha�1 yr�1 of poultry manure wasnomic and environmental applications. In such cases, a
applied to cropland in the spring. This amounts to �85 kg Psingle pooled within-stratum variogram can be com-
ha�1 yr�1 assuming a manure P concentration of 16.9 g kg�1puted, based on the assumption that the spatial variabil-
(Eck and Stewart, 1995; Sharpley et al., 1998).ity structure is the same within each stratum. The pooled

In July 1996, a total of 301 soil samples (0–5-cm depth)within-stratum approach has been used to interpolate
were collected in the cropped areas of the watershed on asoil textural fractions across soil mapping units (Voltz roughly 30-m grid (Fig. 1). Sampling locations were altered

and Webster, 1990; Van Meirvenne et al., 1994). on several parts of the watershed to provide better coverage
Soil P distribution maps calculated using a field mean within variable field boundaries. Six cores (0–5-cm depth)

are generally used for the P index. However, some re- were taken using a 2-cm auger within a 1-m radius of the
searchers have used P distribution maps with subfield sampling location and composited. This depth of soil sampling

is environmentally based and represents the depth of soilscale variability (Eghball and Gilley, 1999; Gburek et
interacting with rainfall and surface runoff that controls Pal., 2000a). Gburek et al. (2000b) applied the P index
release and transport in runoff (Sharpley et al., 1996). Theat field and 25-m2 cell scales across the same watershed
samples were air dried and sieved (2 mm). Mehlich-3 soil Pthat we are investigating in this study. Results were
concentration was determined by extraction of 1 g soil withgenerally similar, yet there were some differences re-
10 mL of 0.2 M CH3COOH, 0.25 M NH4NO3, 0.015 M NH4F,sulting from the different soil P map and finer resolution 0.013 M HNO3, and 0.001 M EDTA for 5 min (Mehlich,

of runoff and erosion characteristics based on locally 1984). Phosphorus in filtered and neutralized extracts was
steeper slopes within fields. The authors raised the ques- determined by the method of Murphy and Riley (1962).
tion whether a subfield resolution will be necessary for

Statistical AnalysisP index application or whether other proposed P index
modifications will be sufficient to account for fine-reso- Three interpolation models (field classification, global, and
lution factors. within-field) were used to estimate the distribution of M3P in

The studied watershed, FD-36, is the site of ongoing the watershed. In the field classification model, the simple
mean is used to estimate the M3P concentration within eachUSDA–ARS research on chemical and hydrologic fac-
field. This model corresponds to the taking of a single bulktors controlling P transport. A primary objective of the
soil sample to represent a field, the soil sampling procedureproject is to delineate critical source areas of P, areas
currently recommended by the Pennsylvania State Collegeboth high in soil P and within runoff producing zones
of Agricultural Sciences (Serotkin and Tibbetts, 1998). The(Gburek and Sharpley, 1998). The objectives of the autocorrelation between points depends only on whether the

study reported in this paper were to detect and analyze points are within the same field.
the spatial autocorrelation of soil P in the watershed, In the global model, the spatial autocorrelation between
and to compare and validate three interpolation models points is a function of the distance between points and is
(one classical and two geostatistical) for the estimation not affected by field boundaries. A global omnidirectional

variogram was generated based on all the points in the water-of soil P distribution in the watershed.
shed, with semivariance, �(h), estimated as:

MATERIALS AND METHODS
�(h) �

1
2|N(h)| �

N(h)
(zi � zj)2 [1]

Field Site and Soils Analysis
where N(h) is the number of pairs of data locations at a lagThe study was conducted on a 39.5-ha watershed (FD-36)
distance (h) apart, and zi and zj are point locations. Variogramsin south-central Pennsylania which is typical of upland agricul-
were fitted using weighted nonlinear least squares regressiontural watersheds within the nonglaciated, folded and faulted,
(Cressie, 1985). Ordinary kriging was then used for interpo-Ridge and Valley Physiographic Province of this region. Soils
lation.were mapped as Alvira (Fine-loamy, mixed, mesic Aeric Fragi-

In the within-field model, the autocorrelation betweenaquults), Berks (Loamy-skeletal, mixed, active, mesic Typic
points is modeled only for point pairs within the same field.Dystrudepts), Calvin (Loamy-skeletal, mixed, mesic Typic Dys-
Individual variograms for each field were lumped to create atrudepts), Hartleton (Loamy-skeletal, mixed, mesic Typic
single pooled within-stratum variogram (Goovaerts, 1997, p.Hapludults), and Watson (Fine-loamy, mixed, mesic Typic
187). This can also be viewed as a global variogram restrictedFragiudults) channery silt loams (Soil Survey Staff, 1975).
to point pairs within the same field. The pooled within-stratumDetailed land use and agronomic management data are col-
variogram, �ws(h), was estimated using the following equation:lected through an annual farmer survey. Further details about

the FD-36 watershed can be found in Gburek and Sharpley
(1998).

FD-36 has mixed land use (about 50% soybean [Glycine �ws(h) �
�
K

k�1

N(h; sk)�̂(h; sk)

�
K

k�1

N(h; sk)
[2]

max (L.) Merr.], wheat [Triticum aestivum L.], or corn [Zea
mays L.], 30% woodland, and 20% pasture, meadow, or turf-
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set. The three interpolation models were used to estimate
M3P concentration at the validation data points and residuals
were recorded. Predictions were calculated solely on the non-
validation data set. Note that this also included a reestima-
tion of the variogram. This estimation was performed with
weighted least squares regression and was checked visually.
This process was repeated 25 times so that at least two residual
estimates were obtained for each data point. Residuals were
averaged for a generalized residual estimate. Interpolation
methods were compared based on residuals and MAE. Statis-
tical analyses were conducted with S-Plus 2000 and S�Spatial-
Stats v.1.1 (Mathsoft, Inc., 1996, 1997) and the SAS System
(SAS Institute, 1990).

RESULTS AND DISCUSSION
Mehlich-3 P values ranged from 22 to 775 mg kg�1

across the watershed with a mean of 225 mg kg�1 and
a coefficient of variation of 65. Fields had mean M3P
from 40 to 553 mg kg�1 with within-field ranges (maxi-
mum minus minimum value) from 28 to 702 mg kg�1.Fig. 1. Location of FD-36 watershed with land uses and soil sampling

locations. Symbol size is proportional to Mehlich-3 phosphorus Within-field M3P coefficients of variation ranged from
(M3P) concentration. Numbers near and within fields are field 13 to 70 with an average of 38.
identification numbers. Values were based on exploratory data analysis and

the Shapiro–Wilk statistic, it was determined that thewhere �h; sk ) is the variogram value for the kth stratum, and
M3P was not normally distributed either globally orN(h; sk ) is the number of pairs of data locations a distance h
within fields. The logarithm of M3P (LogM3P) was de-apart that jointly belong to the kth stratum. Ordinary kriging
termined to be normally distributed within fields, al-was applied within each field individually using the parameters
though it was negatively skewed globally (skewness �for the pooled within-stratum variogram.

Validation was performed by randomly removing one-third 2.4). The field means of LogM3P (rather than individual
of the data points from each field for use as a validation data values) were also determined to be normally distributed.

The mean and variance of LogM3P were 5.18 and 0.55,
respectively, and when averaged by field were 5.27 and

Fig. 4. Residuals from validation of prediction of Mehlich-3 phospho-
Fig. 3. Prediction surfaces of Mehlich-3 phosphorus (M3P) concen- rus (M3P) concentration in watershed FD-36. Classifications are

based on multiples of 71 mg kg�1, which was the average residualtration in watershed FD-36. Classifications are based on agronomic
and environmental critical levels. across all three models.
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0.17, respectively. Analyses were run using both the based on agronomic limits and proposed environmental
limits. The 30 mg kg�1 level is the minimum optimal M3PM3P and LogM3P variables. Results and conclusions

were not substantially different between the two vari- test recommended by the Pennsylvania State College
of Agricultural Sciences (Serotkin and Tibbetts, 1998).ables, therefore only M3P results are presented.
Between 30 and 100 mg kg�1 M3P, there will generally

FD-36 Data Analyses be little crop response to P fertilizer, but little enrich-
ment of P in surface runoff is expected (Sharpley et al.,Both the global and the pooled, within-field omnidi-
1996; Weld et al., 2000). Between 100 and 200 mg kg�1

rectional variograms are presented in Fig. 2. The non-
M3P, no crop response is expected and some enrichmentwithin-field semivariance values, based on point pairs
of P in surface runoff is expected to occur, while betweenthat are not in the same field, are also presented. Num-
200 and 400 mg kg�1 M3P, considerable enrichment isbers near points indicate the number of data pairs within
expected. A � 400 mg kg�1 M3P level was also includedthe lag increment (only labeled when �100 data pairs).
to represent the areas of very high P concentration ob-A spherical semivariance function provided a better fit
served in the watershed.than did exponential, gaussian, or linear functions for

The field classification model prediction surface isboth variograms based on the Akaike’s information cri-
substantially different than the surfaces predicted byteria (Akaike, 1973).
the kriging models, while the kriging models predictBoth variograms exhibit autocorrelation. The fitted
similar surfaces with only a few areas of substantialspherical semivariance function for the global variogram
difference. Both the kriging models predict an area inhas a range of 267 m, a sill of 24 700, and nugget of
the northwest area of the watershed with M3P values5270, while the within-stratum variogram has a range
�400 mg kg�1 M3P. This area is not identified by theof 270 m, a sill of 16 700, and a nugget of 5290. Note
field classification model. Near the center of the water-that because of the sampling design there are no point
shed, there is a relatively low P area (�50 mg kg�1 )pairs with lag distances near the origin; therefore, the
predicted by the within-field model that is not identifiednugget estimate is not supported. These ranges are
by the other models. The only M3P estimates belowslightly greater than those found by Pierce et al. (1995)
30 mg kg�1 (the agronomic critical level) are found infor soil P concentration with a 30.5-m sampling grid.
this area.The sill for the within-field variogram is smaller than the

The distribution of generally high P concentrations insill for the global variogram, an indication that within-
the watershed are likely influenced only by managementfield point pairs had a smaller variance than did global
practices. There does not seem to be an impact of land-point pairs. The pooled within-stratum variogram exhib-
scape position, surface soil texture, and other naturalits a similar range and nugget than does the global vari-
factors (data not presented).ogram. At lag increments of about 200 m, the pooled

within-stratum variogram has substantially smaller semi-
Validationvariance values than does the global variogram. The

nonwithin-field semivariance values provide evidence The above analyses demonstrated that there is spatial
of spatial autocorrelation beyond field boundaries. variability in the watershed at farm- and field-scales.

Validation was used to assess the importance of thisInterpolation Results spatial variability. In Table 1, validation results are pre-
sented by field and as an overall average. In Fig. 4,Prediction surfaces based on the three interpolation

models are presented in Fig. 3. Mehlich-3 P divisions are the average residuals are presented for each model.

Fig. 2. Global and pooled within-stratum variogram for Mehlich-3 phosphorus (M3P) with spherical semivariance function fitted by weighted
least squares. Nonwithin-field semivariance values are also presented. Numbers near points indicate the number of data pairs within the lag
increment. Points without number labels are based on �100 data pairs.
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Table 1. Mean and standard deviation Mehlich-3 phosphorus (M3P) in fields and overall average. Validation results with average fit
by field and overall and mean absolute error (MAE) by field and overall.

Average Standard Average fitted Average fitted MAE MAE MAE
Number of M3P–field Deviation global model within-field field classification global within

Field Id Samples classification model M3P M3P model M3P model model field model

mg kg�1

11 23 191.9 72.8 201.7 192.4 54.9 57.4 58.0
12 8 257.6 37.8 222.1 257.0 37.2 40.7 39.3
13 8 206.5 62.1 229.7 207.8 58.2 57.7 65.6
14 8 233.7 39.2 221.8 229.7 31.1 38.0 26.8
15 5 192.0 36.4 219.6 186.8 36.4 41.5 30.6
16 3 552.9 228.2 476.9 652.0 263.0† 223.9‡ 242.4
17 6 405.2 123.3 455.6 404.1 122.1 128.9 135.2
18 6 454.6 172.4 416.5 470.0 180.8 165.1‡ 200.4†
19 15 325.3 98.4 314.3 317.0 81.5 82.6 75.5
20 8 241.6 91.0 281.3 234.0 79.5 83.4 63.8‡
21 21 201.5 141.8 175.2 202.1 114.8† 89.8 88.7
22 15 74.1 30.3 77.3 74.4 23.9 25.3 21.7
23 11 40.8 10.4 67.3 40.8 10.0 27.8 10.7
25 18 368.8 139.1 348.7 362.5 111.7 108.1 108.1
26 22 367.1 190.5 333.5 363.0 157.3† 116.2 122.9
27 25 169.3 97.0 202.2 161.6 70.0 85.2 70.6
28 23 81.5 43.4 117.4 81.8 39.6 45.1 24.1‡
29 9 112.4 77.5 111.6 108.6 66.8† 39.1 38.6
30 29 179.0 95.8 182.5 175.6 79.9† 48.9 62.1
31 13 312.8 41.0 233.2 315.2 35.3 81.7† 28.9
32 12 190.8 59.1 252.3 194.1 54.0 72.2† 32.8‡
33 13 311.0 92.6 272.2 311.3 89.1 79.5 88.0
Overall average 301 225.3 146.5 224.6 224.3 76.0 71.6 65.9

† Indicates that model performed worse than the other two models (�15 mg kg�1 difference).
‡ Indicates that model performed better than the other two models (�15 mg kg�1 difference).

Classification breaks at 71 and 142 correspond to 1 and variability in these fields is confined to field boundaries
(Fig. 1). The inclusion of farm-scale effects in the model-2 times the average MAE across all models. The average

MAE of the within-field model is 6.7 and 11.1 mg kg�1 ing of these fields caused a poorer characterization by
the global model. The global model also performedM3P better than the global and field classification mod-

els, respectively. These differences are small and indi- worse than the field classification model in fields 31
and 32; in these fields the incorporation of farm-scalecate that, overall, the three models performed similarly.

From the complete data set, the average deviance from variability into the modeling is worse than assuming no
spatial autocorrelation. The global model provided thethe mean within fields was 71 mg kg�1. Although this

is a biased estimator, this value roughly compares with best fit for two fields with very small sample sizes, Fields
16 and 18. In this region of the watershed, the fieldthe average MAE values observed in the validation data

sets, an indication that the removal of one-third of the classification and within-field models failed to incorpo-
rate the farm-scale effect of high M3P concentration.data did not severely degrade prediction precision.

The average MAE was highly correlated to within- The within-field model performed worse than did the
other models in Field 18, but was better than both mod-field standard deviation (R2 � 0.86), soil P concentration

(R2 � 0.73), and the positive interaction between within- els in Fields 20, 28, and 32. Field 18 is one of the fields
with a low sample size (6 samples). Fields 28 and 32field standard deviation and P concentration (R2 � 0.93).

All three models were unbiased estimators overall have high within-field spatial autocorrelation that does
not extend beyond field boundaries.(overall mean within 1.0 mg kg�1 M3P).

For discussion purposes, two models we considered Of the 11 fields located within 150 m of the stream,
eight were fields that were mapped substantially differ-to have performed differently within a field when the

difference between the average MAE between the mod- ent by the three models based on the 15 mg kg�1 MAE
criterion. These fields are particularly important to theels was �15 mg kg�1. Field identification numbers are

georeferenced in Fig. 1, and match those used by Gburek characterization of the watershed because the near-
stream areas are the most hydrologically active in thiset al. (2000a). The field classification model performed

worse in five fields relative to the kriging models (Fields region (Gburek and Sharpley, 1998). Points in the land-
scape must be hydrologically active for the transport of16, 21, 26, 29, and 30). All three models poorly character-

ized one of these fields, Field 16, which contains only P. Generally, soils in the near stream area had lower
M3P concentrations (Fig. 1 and 3). We suggest thatthree sample points and has the greatest within-field

variability in the watershed. The other four fields that management in these fields may have been affected by
poor soil drainage, limiting productivity and accessibilitywere poorly described by the field classification exhibit

substantial within field spatial autocorrelation (compare to farm equipment. As a result, these near-stream fields
received less P and have lower M3P concentrations thanTable 1 and Fig. 1). All five of these fields are within

50 m of the stream, and therefore may be among the adjecent fields.
An additional analysis was conducted to analyze themost hydrologically-active in the watershed.

The global model performed worse than did the influence of sampling intensity on validation results. The
validation procedure was repeated except the removalwithin-field model in Fields 28, 31, and 32. The spatial
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Field Studies of Crop Response to Water and Salt Stress

U. Shani* and L. M. Dudley

ABSTRACT the crop tolerance level, will decrease yield (Maas and
Hoffman, 1977; Letey et al., 1985; Letey and Dinar,Studies of crop response to water and salt stress vary either salinity
1986; Bresler, 1987; Maas, 1990); second, biomass pro-with a high leaching fraction or irrigation in the absence of salinity
duction is linearly related to transpiration (deWit, 1958;to isolate and quantify the effects of the two types of stress. Under

deficit irrigation with saline water, a water conserving practice, the Childs and Hanks, 1975; Letey and Dinar, 1986; Bresler,
crop experiences simultaneous matric and osmotic stress, and it is not 1987; Shani et al., 2001); and third, the effects of salt
known if experiments designed to isolate stress effects may be used and water stress on yields are additive (Nimah and
to predict crop response to simultaneous stresses. Thus, a study was Hanks, 1973; Letey et al., 1985; Letey and Dinar, 1986;
conducted wherein yields were determined under varying levels of Bresler, 1987; Cardon and Letey, 1994; Pang and Letey,
salinity and irrigation. Corn (Zea mays L.) and melon (Cucumis melo 1998). The validity of the first two assumptions is wellL.) were grown at the Arava Research and Development Farm in

established. The linear dependence of relative dry mat-Yotvata, Israel, and alfalfa (Medicago sativa L.) at the Utah Power &
ter production (Yactual/Ypotential ) on relative transpirationLight Research Farm in Huntington, UT. Corn and melon plots were
(Tactual/Tpotential ) under conditions of water deficit has beendrip irrigated at six ratios of potential evapotranspiration ranging
validated for variety of climates and crops (deWit, 1958;from 0.2 to1.7 in combination with four salinity levels. Alfalfa was

irrigated with water of 0.2 and 4.0 dS m�1 from a line-source sprinkler. Childs and Hanks, 1975; Letey and Dinar, 1986; Shani
For all three crops, the salinity treatments consisted of a control et al., 2001). Under conditions of salt stress (Bresler
treatment with a salinity level less than published salt-tolerance thresh- and Hoffman, 1986; Bresler, 1987) and Na stress (Shani
olds. Interactive effects of salinity and water stress were not observed et al., 2001), relative yield and relative transpiration are
in these field experiments. At low irrigation levels (≈70% of potential linearly related.
evaporation), yields were unaffected by the salinity level. At the higher The validity of the third assumption is less certain.irrigation levels, the salinity level caused significant differences in

Plants respond to drought by attempting to both de-yield. Yield data were fit to piecewise linear models that emphasized
crease transpiration and increase water uptake. Delete-the limiting nature of the effects of salt and water stress.
rious effects of salinity on crop growth have been attrib-
uted to an osmotic effect or a specific-ion effect. Osmotic
stress inhibits water uptake from the soil and requiresDeficit irrigation is practiced in many arid areas
the plant to use energy and carbohydrate in synthesizingof the world, and increased demand on water sup-
organic solutes to adjust its internal osmotic potentialplies worldwide suggests the practice must increase.
(Läuchli and Epstein, 1990; Jacoby, 1994). To a lesserMoreover, as competition for limited water resources
degree, plants may adjust their internal osmotic poten-increases, it is reasonable to assume that agriculture
tial by accumulating some salt from the surroundingwill have to make do with waters of poor quality. One
solution (Läuchli and Epstein, 1990). Yield loss resultschallenge of the future will be to maintain or even in-
from reduced photosynthesis associated with closingcrease crop production with less water that often may
stomata (Grill and Ziegler, 1998), from energy and car-be of poor quality.
bohydrate use in osmoregulation, and from sequesteredQuantitative understanding of crop production under
salt interfering with cell function (see e.g., Läuchli anddeficit irrigation with saline water is generally based on
Epstein, 1990). The specific-ion effect results from ionthree assumptions. First, an increase in salinity, above
interference with a physiological process in the plant (see
e.g., Läuchli and Epstein, 1990; Munns, 1993; Marsch-

U. Shani, Department of Soil and Water Sciences, Faculty of Agricul- ner, 1995). Because plants respond to drought induced
tural, Food and Environmental Sciences, POB 12, Rehovot 76100, by limited water or elevated salinity by a similar mecha-
Israel; L.M. Dudley, Department of Plants, Soils, and Biometeorology, nism, the sum of the matric and osmotic components
Utah State University, Logan, UT 84322-4820. Received 28 Aug. 2000.

of the water potential has been used to estimate yield*Corresponding author (shuri@agri.huji.ac.il).
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